New consulting relationship with GreenTecAuto begins
What actually goes wrong with the batteries????
A look at todays Hybrid and EV battery packs
Battery packs exposed
Keeping Warm In New England
Plugging into the SUN
50A 600VAC transfer relay
AC source transfer relay is finished
Adding some new batteries
All weather dish movers
Almost ready to wire things up
Assembling the parts for the load manager
Beating on the system/ use it or loose it
Better solar absorber plate
Better Specific gravity instrument
bringing in the batteries
Burgers are better
California or bust! Solar modified mobility scooter
Canning pot
canning season is here again
Concentrate the heat test #4
Connecting battery bank #2
Cooking some hotdogs
Crappy luck with the weather
Designing a simpler and lower cost solar tracking amplifier
Equilizing the batteries
Everything is working again.
Finally installed
Finally nearing completion of the battery enclosure
multytracker 1
First test
Getting a BIG solar plug
Getting some experience with DC
Getting started on the final wiring
Getting too old to be slinging 120 lb batterys into the rack
Giving the batteries a workout
Hot water tank as energy storage component test 1
Hot water test 2
Identifing the wires, and mounting the Inverter panel
Insulated hibachi reaches baking temperatures
keeping the head cool
keeping warm.
Sue Dabrowski (my better half) makes some solar eggs
Lightning the super fast EV minibike
Looking the data
Main structure of battery rack is finished
Making some stewed tomatoes
making the connection to the existing wiring
making the DC pos buss bars
More improvements to the dish
Multy purpose tracker 1
New tracking amplifier
No more throw away batteries please
Not very encouraging test # 3
Old Rear projection TV lens makes solar furnace
power distribution box fabrication
preparing to connect the big loads
Reading Specific Gravity accurately
running off grid all day
Running on batteries
Second test
Snow melt prep for test 2
Snow melt test one A close look at the process
solar cell adhesion test #1
Solar cells on my Insight ????
Solar cooker gets some wheels
Solar cookout in 20 degree weather
Solarfest 2013
Solarfest is next weekend so it is time to tweak the tools
Solar powered wood burner X-Y stage
Solar powered wood burner focus and lens assembly
Solar teaching toys
Solar tracking with no electronics" Solar Puppet"
Starting the rewiring
The 7 foot circle of sunlight moves to rear deck.
the final high current connections
the finished load center and charge controller connections
the heavy lifters arrive
The new batteries are finally installed and working
The snow is returning???
The snow keeps on coming, need to figure out a good way to keep the panels clear
The sun is dropping 1KW/SQ meter
The transfer relay is wired in and working.
Tracking the sun Big Time
Mikey's solar panel snow sweeper
Vertical and horizontal trackers installed, drive wheel controls
Very interesting heating element
Who pulled the plug?
Wood burning art ?
Yuck, more snow
Making a small solar concentrator
Building MIMA and the plug in adapters
Converting a telephone truck to electric
DIY dual pulse Capacitor Discharge Spotwelder
Chevy Bolt EV joins the family
Getting in shape while making electricity
Replacing gasoline with solar electric lawn equipment
What is Genesis One?
How to stop the aging process DIY
MIMA Install Day 2005 a Big Success!
Building a hybrid car grid charger
Tapping into the Wind
Expanding MIMA with the Distribution board ( users projects )

No more throw away batteries please

No more throw away batteries please
Solar three NIMH cell charger

I needed a flashlight, and like so many people, I bought some of those cool LED flashlights. I grabbed one out of my drawer, and the three AAA batteries were dead. I went to buy some AAA alkaline batteries and was shocked when I saw the price. I saw 4 NIMH rechargeable AAA's with a charger,that can be used 500 times and bought that instead.
The cost of ownership of a well maintained rechargeable NIMH AAA is many times less than the throwaway kind, and it reduces the amount of energy required to make the one use batteries and to dispose of the spent ones.
The only thing I did not like about the NIMH was the wall wart charger that will inevitably be forgotten and stay plugged in between the charges, so it becomes part of the background load of the electrical grid.My charger and millions more are just wasting valuable energy.
I looked at my cute 3.2V 85MA solar cells, and decided that a solar charger makes much more sense. The flashlights will run for quite a few hours on a full charge. The 800 MAH duracell NIMH cells can take the 40-85 MA from the panels for many hours and only get slightly warm,and they will be topped off and ready to use when you need it.
A piece of PVC sign board, some hotmelt, A diode for isolation, and some strips of brass and steel, and you have a solar NIMH charger for the three cell battery packs that are used in many of the flashlights. One pack is used while the other sits in a sunny window getting charged with the greenest energy we will ever have.The two panels are put in series with the diode, and the positive and negative solar leads are soldered right to the brass terminals.
No regulator should be required at the
C/10-C/20 rate that the panels max out at.That is only 1/2 watt, which the pack can easily dissipate. I will do some long term test to see how the cells hold up to a several day charge which will hold them at the full charge point.