Grid Charger
Grid charger owners and location, as well as some service links for hybrid services
Grid charger code V3.0 manual
Understanding the charging and balancing process
Pack discharger
SOC reset device
Insight Battery pack lifter
Grid charger test adapters
Reprogramming the charger
Installing the Genesis One Universal grid charger in an Insight
Installing the Genesis One Universal grid charger in a First Gen Civic
Harness options
The Universal Grid Charger
MIMA Pack Whack and rebalancing the battery
Mikes Insight
EV Insight with a Prius heart
Grid charger Operating Instructions V1.2
Designing a PHEV system for the Civics, Insight 1 and 2 ------------Micro V-Buck PHEV
Doug's V-Boost
Randall's Insight
Paul's Adventures in alternative evergy
Western Washington University X-Prize car
Finding The Best Hybrid Mix
5th wheel part 2
Air cooled 5th wheel
Air springs arrive
No assist when warm
Attachment plate / Ripping the battery pack out .
Back to the 5th wheel
Back to the 5th wheel with some power in our pocket
Beefing up the rear suspension to handle the extra battery weight
Better wheel
IMA Battery Booster/Balencer/Charge controller.
Booster Battery progress
Booster pack test 1
Breaking away from the grid
Cleaning things up for the trek to Madison
DC/DC mounting and cooling
E-Wheel repair and inspection
Final 5th wheel
Finishing up the boost power supply
First full weight test
First power up of boost power supply
Got the exhaust finished
Holy Bat Dropings Robin it is an electric car
MIMA logo?
Air spring and EV wheel begin to take shape
More Prius batteries
New 5th wheel
One hour of electric priority
Portable charging system
Second boost test run
Some booster battery options
Starting to plan the trip to Madison
Test runs and 5th wheel
The Etek motor
The EV Wheel
The ideal battery for a 200 mile commute
Vboost +MIMA, a winning combo for the Insight
What is that orange tail on my Insight
E-wheel for any vehicle

IMA Battery Booster/Balencer/Charge controller.

click to expand
Why do Insights get SOC recalibrations?
One cell out of the 120 cells in the pack reaches the point where the voltage starts to drop, and before the cell reverse charges and gets ruined, the IMA turns off assist, and force charges the pack to save it.This is a low capacity recalibration.
The one cell that has less capacity than the other 119 cells,rules the minimim end of the discharge curve, even though the rest of the cells could have a lot of juice left in them. A perfect pack only has 4 useable AH of capacity, a weak cell at half capacity would reduce the pack useable energy to 2 ah.
I have a new idea on how to do the booster pack. instead of using 5 parallel 48V to 170V 3A dc/dc converters for charging, as I had originally planned, I will now use 10 - 48V to 16V 16.5A dc/dc converters. These are standard half brick power supplies that can do constant current mode with a small current shunt and auxiliary circuit. The supplies are fully isolated so that the inputs can be in parallel while the output is in series. A small Microprocessor based voltage/temp/SOC measuring circuit will control each of these supplies. Every two subpacks will be cared for by this type system, 10 in all. Each BCM node will be connected to a master BCM via an optically isolated serial buss. The master will decide if one of the packs is dropping low, and will instruct that microprocessor to charge longer. The modules cannot be turned on an off very fast, so the charge may be full on for 10 seconds, and off for 10 to give 50% average charge. A weak subpack may get full charge 100% of the time to boost it back up relitive to the others, avoiding the recal.
The center tap between the two 6 cell parts of the sub system could also be monitored, and the charge could be shunted to either or both of the subpack . The whole pack could be charged at up to 2500W with all the supplies on at once, therefore allowing a higher use of the electric side of the hybrid.Increasing MPG to hopefully >100MPG. The ability to provide 16A at 144V from the 48V booster pack, allows a constant application of the electric drive at low power.
If the main pack is allowed to charge right up to near full, and the boost is turned off, you are back to the stock MIMA equipped Insight. When the big 48V battery dies, you loose active subpack balancing, and are back again to the standard MIMA equipped Insight, but are 250 LBS heaver.
Then we add the EV only mode, but thats after we get this battery stuff ironed out.