New consulting relationship with GreenTecAuto begins
What actually goes wrong with the batteries????
A look at todays Hybrid and EV battery packs
Battery packs exposed
Keeping Warm In New England
Plugging into the SUN
50A 600VAC transfer relay
AC source transfer relay is finished
Adding some new batteries
All weather dish movers
Almost ready to wire things up
Assembling the parts for the load manager
Beating on the system/ use it or loose it
Better solar absorber plate
Better Specific gravity instrument
bringing in the batteries
Burgers are better
California or bust! Solar modified mobility scooter
Canning pot
canning season is here again
Concentrate the heat test #4
Connecting battery bank #2
Cooking some hotdogs
Crappy luck with the weather
Designing a simpler and lower cost solar tracking amplifier
Equilizing the batteries
Everything is working again.
Finally installed
Finally nearing completion of the battery enclosure
multytracker 1
First test
Getting a BIG solar plug
Getting some experience with DC
Getting started on the final wiring
Getting too old to be slinging 120 lb batterys into the rack
Giving the batteries a workout
Hot water tank as energy storage component test 1
Hot water test 2
Identifing the wires, and mounting the Inverter panel
Insulated hibachi reaches baking temperatures
keeping the head cool
keeping warm.
Sue Dabrowski (my better half) makes some solar eggs
Lightning the super fast EV minibike
Looking the data
Main structure of battery rack is finished
Making some stewed tomatoes
making the connection to the existing wiring
making the DC pos buss bars
More improvements to the dish
Multy purpose tracker 1
New tracking amplifier
No more throw away batteries please
Not very encouraging test # 3
Old Rear projection TV lens makes solar furnace
power distribution box fabrication
preparing to connect the big loads
Reading Specific Gravity accurately
running off grid all day
Running on batteries
Second test
Snow melt prep for test 2
Snow melt test one A close look at the process
solar cell adhesion test #1
Solar cells on my Insight ????
Solar cooker gets some wheels
Solar cookout in 20 degree weather
Solarfest 2013
Solarfest is next weekend so it is time to tweak the tools
Solar powered wood burner X-Y stage
Solar powered wood burner focus and lens assembly
Solar teaching toys
Solar tracking with no electronics" Solar Puppet"
Starting the rewiring
The 7 foot circle of sunlight moves to rear deck.
the final high current connections
the finished load center and charge controller connections
the heavy lifters arrive
The new batteries are finally installed and working
The snow is returning???
The snow keeps on coming, need to figure out a good way to keep the panels clear
The sun is dropping 1KW/SQ meter
The transfer relay is wired in and working.
Tracking the sun Big Time
Mikey's solar panel snow sweeper
Vertical and horizontal trackers installed, drive wheel controls
Very interesting heating element
Who pulled the plug?
Wood burning art ?
Yuck, more snow
Making a small solar concentrator
Building MIMA and the plug in adapters
Converting a telephone truck to electric
DIY dual pulse Capacitor Discharge Spotwelder
Getting in shape while making electricity
Replacing gasoline with solar electric lawn equipment
What is Genesis One?
How to stop the aging process DIY
MIMA Install Day 2005 a Big Success!
Building a hybrid car grid charger
Tapping into the Wind
Expanding MIMA with the Distribution board ( users projects )

Tracking the sun Big Time

Tracking the sun Big Time
Tracker Version 1

The big hurdle that many people have when thinking of converting your old big dish into a solar furnace, is how to make it follow the sun.
First thing you need is a base, I welded up a triangulad base from heavy channel. The front wheel bearing from a VW bettle was attached to a large 1/4" steel disk.
Once the disk was mounted to the wheel hub, the disk was rotated and a line drawn at the largest continuous circle that would fit.The steel was trimmed to the line, with hand jigsaw, and finished with hand grinder.
I wanted a chain drive, so I turned the big disc into a giant sprocket in a crude but effective way.
I took a #40 chain, and wrapped it around the big disc. I used a center punch and marked the disc edge each 10 teetk of the chain.
Uf course, it did not come out an even number of teeth, so I made a single tooth add on to the disc to exactly keep the chain in place simulating the correct diameter so the teeth exactly match around the diameter. I drilled and tapped a 10/32 hole at each punch mark, locktited a 10/32 threaded rod into each, and cut off the lengths and deburred and shapped the teeth and it worked beautify.
Tracking is really pretty simple,especially if it is kept in the analog world. Never underestimate the lowly Op amp, and a few power transistors in a full bridge servo amp.
The sensor is something I invented 20 years ago, that is the magic in the self powered solar tracker below.
Two photo sensors are configured so the two detector outputs will cancel to zero V when both have equal angle/illumination from the sun.
Photo diodes or chips of solar cells work well as photo detectors. I set them at 45 degrees to each side of where I want the null to be. The ones I used on the big dish are set in epoxy putty.
The first drive system has the horizontal axis powered by a precision harmonic drive gear motor that is way too expensive for a dish,but was in my surplus motor box.The vertical axis with just a simple wench, is very balance sensitive.Any imbalance against gravity has to be constantly provided by the motor to hold a position. Weather protection for a chain is too difficult.
I found some nice C band big dish satellite movers for $39, and they are waterproof and since they are an acme screw drive, do not need to provide much holding force even with a big weight imbalance.
The new motors will be put on the system in the spring.
A schematic of the basic tracker is available on the downloads page:Simple Tracker schematic
The photo detectors I used were osram BPW34FA which are available from digikey
photo sensors